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Aquatic Invertebrates Risk Index

Background

Most of the regulatory risk assessments carried out on the effects of toxicants in the aquatic
environment are based on extrapolation methods that employ single species laboratory data on
Daphnia or other indicator species, with survival (most frequently), growth and reproduction
being the usual endpoints. Occasionally, simulated (mesocosms) or actual field tests are carried
out in addition to the single species data. This allows for a verification of two large uncertainties
in the risk assessment: 1) How representative the single species tests are to a more complex
and diverse aquatic community; and 2) How representative impacts seen in a laboratory setting
are to impacts in a pond or simulated pond environment where physical and biological
conditions can modify a pesticide’s toxic action.

The proposed PRIME index will rely on three distinct sources of information:

1. An estimate of the peak concentrations of pesticides from both drift and runoff
expected into receiving water bodies (this will be covered in detail in another white
paper)

Laboratory acute toxicity data for crustacean species

3. An analysis of the existing corpus of small pond or mesocosms studies where the

response of the crustacean community to known pesticide inputs has been quantified

The index will represent the acute risk that a pesticide represents to the crustacean community
of receiving waters.

Data Sources

All components of the aquatic index require a representative toxicity endpoint, e.g., the level
where toxic effects are expected to occur. Due to general availability of data from a broad
range of species, especially for older pesticides, a species sensitivity distribution approach is
proposed (described in detail in Whiteside et al. 2006, 2008). A series of steps are used to
derive separate Hazardous Concentration values (HCs; i.e. those at the 5% tail of a cumulative
frequency distribution). This is carried out here for crustacean; values are to be generated also
for fish, insects and algae. Where inadequate sample size does not permit use of a standard
species sensitivity distribution approach, the available data are used to estimate the mean of
the distribution and calculated inter-species generic variances (Whiteside 2008) are used to
values comparable to those generated with a full species sensitivity distribution (Van
Vlaardingen et al. 2004).
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A preliminary analysis and modeling of aquatic pond and mesocosm studies has been carried
out and was reported in Singh (2007), and further refined in Mineau et al. (2009). A large
literature review identified 60 studies representing 184 experiments on 33 pesticides —
although not all of these studies were suitable for this index. Only studies with sound
experimental designs and with quantification of effects (either explicitly stated or interpreted
from figures provided) were retained. In the final analysis, sixty-nine independent water bodies
contributed to the models. The data points were extracted from 28 studies examining 21
pesticides: one fungicide, five herbicides and 15 insecticides. By and large, Cladocera, Calanoida
and Cyclopoida were the most studied crustaceans with pesticide effect data for these
zooplankton orders found in 89% of studies. The effects of pesticides on Amphipoda and
Ostracoda were followed in 30% of the studies.

An estimation of the likely drift and runoff of pesticide from single-field treatments will be
described in a separate document.

Index Structure

A simple risk quotient (RQ) can be constructed to relate predicted end of field concentrations to
toxicological endpoints. An RQ provides an estimate of whether concentrations predicted to be
lethal to various taxa are exceeded. It does not provide a strong basis to assess the magnitude
of the impact or determine whether this impact is biologically meaningful. Rather, our
approach will be to ‘calibrate’ RQs by constructing models relating total abundance or biomass
of selected taxa (expressed as a ratio of treated to control pond) or the proportion of impacted
species (the proportion showing significant declines) to toxicity/water concentration variables.
For example, the following figure shows the regression between the log number of toxicity
units (TUs) calculated with the crustacean HCs value against the crustacean species count ratio
(the proportion of significantly affected species — or families in some taxa) for a sample of 69
ponds and mesocosms representing 21 pesticides. 95% prediction intervals are shown. Only
pond and mesocosms without fish are included here as it has been shown that the presence of
fish can complicate the interpretation of the results.
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Scatterplot (Updated crustacea models file (for publication).sta 25v90c)
Count ratio recalculated (PM) = 0.3248+0.1576*x; 0.95 Pred.Int.

CRUSTACEAN COUNT RATIO

LOG TU HC5 (CRUSTACEA)

It should be noted that the number of TUs delivered to the ponds or mesocosms can be
calculated directly because peak water concentrations are measured in all of the studies. In the
PRIME index, this step will depend on a good estimation of peak water concentrations. A risk
guotient based on water concentrations is the only approach possible if we are to consider all
possible routes of exposure to the aquatic environment, notably drift and surface runoff.
Models exist to estimate both of these inputs separately, but their separate contributions must
be added and the result expressed as a water concentration if they are both to be considered in
our scores.

The following plot shows all abundance changes recorded for all measured taxonomic groups in
all pond and mesocosm studies. The points are not strictly independent but this allows
visualizing all the available data. Two observations can be made: 1) the abundance data show a
similar step function as shown with the count ratios above. Large abundance changes and an
increase in the proportion of affected species begin around 0.1 to 1 Toxic Units (-1 to 0 on log
scale) based on the crustacean HC5 values. By 10 Toxic Units or more (1 on log scale),
disturbances to the aquatic systems are typically serious; 2) abundance changes are substantial
— commonly higher than 10 fold and as high as 1000 fold — when the studies record that some
species have been significantly affected. This is an indication of the typically low power of
mesocosm studies to detect significant effects on account of the high natural variability of
those systems.
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Scatterplot (models database (crustacea - all points).sta 80v*947c)

Log of the Abundance Ratio
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Fewer studies are available on aquatic insect species. In order to see whether a score based on
crustacean data would also be protective of insects, the crustacean species count ratio and the
equivalent count ratios for insect (on a family basis) are both plotted against the crustacean TU
index.

Scatterplot (models database (PM) 14v*122c)
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The impact on insects is not well predicted by the number of crustacean TUs — emphasizing the
need to develop insect-specific toxicity measures. However, it appears that a scheme based on
crustacean TU values and sufficiently protective of crustacea will de facto protect insects. We
can therefore carry on with the development of a crustacean-based score with the knowledge
that it will be protective of most aquatic invertebrates. (However, there as been relatively little
testing of some insect larval groups potentially very sensitive to pesticides. As our
understanding of trait-based toxicological sensitivity increases, it may be necessary to revise
this position.)

In order to work with the apparent non-linearity of the data and to transform the score into a
probability of adverse outcome in line with the avian and mammalian scores, we defined a
count ratio of 0.1 (10% of species being significantly affected by treatment) as an adverse
outcome. Realistically, the distribution of points in the dataset assembled does not allow us to
distinguish between 10% and 20% of species being significantly affected. As more field data are
made available, it will be possible to refine these estimates. The count ratio data can therefore
be re-plotted as follows:

Model: Logistic regression (logit)
y=exp(.243728+(1.57667)*)/(1+exp(.243728+(1.57667)*X))

12

4 3 2 1 0 1 2 3 4 5
LOG TU-HC5 (CRUSTACEA)

The final algorithm proposed for our aquatic invertebrate indicator gives P as the probability
that an application will give rise to an undesirable outcome defined as 10% of crustacean
species being significantly affected:
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a-+bx)

a-+bx)

1+e

..where x is the number of TUs (Toxic Units expressed as:

e Peak pesticide concentration / Crustacean HCs
e a=0.243728
e b=1.57667

Use Pattern Adjustment Factors

Unlike the terrestrial indicators, UPAFs are not used to change the above algorithm or modify
the probability of impact once peak water concentrations have been measured. Any mitigation
of runoff or drift will be introduced in the water concentration modeling phase described
elsewhere.

Literature cited

Mineau, P., T. Dawson, M. Whiteside, C. Morrison, K. Harding, L. Singh, T. Léngle, and D.A.R.
McQueen. 2009. Environmental Risk-based Standards for Pesticide Use in Canada.
National Agri-Environmental Standards Initiative Synthesis Report. Environment Canada,
94pp.

Singh, L. 2007. Developing Risk-based Rankings for Pesticides in Support of Standard
Development at Environment Canada: Predicting Effects of Pesticides in Freshwater
Aguatic Ecosystems — Using Field Data Validation. National Agri-Environmental
Standards Initiative Technical Series Report No. 3-31. 207 p.

Pesticide Risk Mitigation Engine — Aquatic Risk Indices 8



AUTHOR: Pierre Mineau

Van Vlaardingen, P.L.A,, T.P. Traas, A.M. Wintersen and T. Aldenberg. 2004. ETX2.0. A program
to calculate hazardous concentrations and fraction affected, based on normally-
distributed toxicity data. RIVM report (and software) 601501028/2004.

Whiteside, M., P. Mineau, C. Morrison and K. Harding. 2006. Developing risk-based rankings for
pesticides in support of standard development at Environment Canada: Setting pesticide
priorities for aquatic ideal performance standards and ranking the aquatic hazard of in-
use pesticides in Canada. National Agri-Environmental Standards Initiative Technical
Series Report No. 2-42, Environment Canada,173 pp.

Whiteside, M., P. Mineau, C. Morrison, and L.D. Knopper. 2008. Comparison of a score-based

approach with risk based ranking of in-use agricultural pesticides in Canada to aquatic
receptors. Integrated Environmental Assessment and Management 4(2):215-236.

Pesticide Risk Mitigation Engine — Aquatic Risk Indices 9



AUTHOR: Pierre Mineau

Algal Risk Index

Background

Most of the regulatory risk assessments carried out on the effects of toxicants in the aquatic
environment are based on extrapolation methods that employ single species laboratory data on
various algal indicator species, with growth and reproduction being the usual endpoints.
Occasionally, simulated (mesocosms) or actual field tests are carried out in addition to the
single species data. This allows for a verification of two large uncertainties in the risk
assessment: 1) How representative the single species tests are to a more complex and diverse
algal community; and 2) How representative impacts seen in a laboratory setting are to impacts
in a pond or simulated pond environment where physical and biological conditions can modify a
pesticide’s toxic action.

The proposed PRIME index will rely on three distinct sources of information:

1. An estimate of the peak concentrations of pesticides from both drift and runoff
expected into receiving water bodies (this will be covered in detail in another white
paper)

Laboratory acute toxicity data for algal species

3. An analysis of the existing corpus of small pond or mesocosms studies where the

response of the algal community to known pesticide inputs has been quantified

The index will represent the acute risk that a pesticide represents to the algal community of
receiving waters.

Data Sources

All components of the aquatic index require a representative toxicity endpoint, e.g., the level
where toxic effects are expected to occur. Due to general availability of data from a broad
range of species, especially for older pesticides, a species sensitivity distribution approach is
proposed (described in detail in Whiteside et al. 2006, 2008). A series of steps are used to
derive separate Hazardous Concentration values (HCs; i.e. those at the 5% tail of a cumulative
frequency distribution). This is carried out here for algae; values are to be generated also for
fish and crustacea. Where inadequate sample size does not permit use of a standard species
sensitivity distribution approach, the available data are used to estimate the mean of the
distribution and calculated inter-species generic variances (Whiteside 2008) are used to values
comparable to those generated with a full species sensitivity distribution (Van Vlaardingen et al.
2004).
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A preliminary analysis and modeling of aquatic pond and mesocosm studies has been carried
out and was reported in Singh (2007), and further refined in Mineau et al. (2009). A large
literature review identified 60 studies representing 184 experiments on 33 pesticides —
although not all of these studies were suitable for this index. Only studies with sound
experimental designs and with quantification of effects (either explicitly stated or interpreted
from figures provided) were retained.

An estimation of the likely drift and runoff of pesticide from single-field treatments will be
described in a separate document.

Index Structure

A simple risk quotient (RQ) can be constructed to relate predicted end of field concentrations to
toxicological endpoints. An RQ provides an estimate of whether concentrations predicted to be
lethal to various taxa are exceeded. It does not provide a strong basis to assess the magnitude
of the impact or determine whether this impact is biologically meaningful. Rather, our
approach will be to ‘calibrate’ RQs by constructing models relating the proportion of impacted
species (the proportion showing significant declines) to toxicity/water concentration variables.

For example, the following figure shows the regression between the log number of toxicity
units (TUs) calculated with the algal HCs value against the algal species count ratio (the
proportion of significantly affected species — or families in some taxa) for a sample of 32 pond
and mesocosm studies representing 9 herbicides. Only studies with herbicides were retained
because often cause massive increases of phytoplankton in response to effects on grazer
communities, i.e. crustacean or aquatic insects primarily. 95% prediction intervals are shown.
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L TU HC5 - Aicount ratio change: 12 = 0.2914; r =0.5398, p = 0.0014

count ratio change = 0.1043-+0.2032*x; 0.95 Pred.Int.
1.2

Algal species count ratio

-0.2

1 o 1 2 3 4 5
Log TU (HC; Algae)

It should be noted that the number of TUs delivered to the ponds or mesocosms can be
calculated directly because peak water concentrations are measured in all of the studies. In our
tool, this step will depend on a good estimation of peak water concentrations. A risk quotient
based on water concentrations is the only approach possible if we are to consider all possible
routes of exposure to the aquatic environment, notably drift and surface runoff. Models exist
to estimate both of these inputs separately, but their separate contributions must be added
and the result expressed as a water concentration if they are both to be considered in our
scores.

The following plot shows all abundance changes recorded for all measured taxonomic groups in
all pond and mesocosm studies. The points are not strictly independent but this allows
visualizing all the available data. Two observations can be made: 1) the abundance data show a
similar step function as shown with the count ratios above. Large abundance changes and an
increase in the proportion of affected species begin around 1 to 10 Toxic Units (0 to 1 on log
scale) based on the algal HC5 values. Abundance changes in affected taxa can be substantial —
commonly higher than 10 fold and as high as 100,000 fold. This is an indication of the typically
low power of mesocosm studies to detect significant effects on account of the high natural
variability of those systems.
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Scatterplot (algae abundance ratios.sta 95v*757c)
L A R =0.0681+0.2149*x

Log of the abundance ratio

-5 -4 -3 -2 -1 0 1 2 & 4 5
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In order to work with the apparent non-linearity of the data and to transform the score into a
probability of adverse outcome in line with the avian and mammalian scores, we defined a
count ratio of 0.2 (20% of species being significantly affected by treatment) as an adverse
outcome. Realistically, the distribution of points in the dataset assembled does not allow us to
distinguish between 20% and 30% of species being significantly affected. As more field data are
made available, it will be possible to refine these estimates. The count ratio data can therefore
be re-plotted as follows:

Model: Logistic regression (logit)
y=exp(-1.7887+(1.3751)*x)/(1+exp(-1.7887+(1.3751)*x))

1.2

-0.2

1 0 1 > 3 4 5
Log TU (HC; - Algae)
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The final algorithm proposed for the algal indicator gives P as the probability that an application
will give rise to an undesirable outcome defined as 10% of algal species being significantly

affected:

a+bx)

a+bx)

l+e

..where x is the number of TUs (Toxic Units expressed as:

e Peak pesticide concentration / Algal HCs
e a3=-1.7887

e b=13751

Use Pattern Adjustment Factors

Unlike the terrestrial indicators, UPAFs are not used to change the above algorithm or modify
the probability of impact once peak water concentrations have been measured. Any mitigation
of runoff or drift will be introduced in the water concentration modeling phase.

Literature cited
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Fish Chronic Risk Index

Background

Fish are poorly covered in the pond and mesocosms studies that form the basis of the aquatic
invertebrate and algal indices. Indeed, because of problems encountered in mesocosm studies
when fish are present, studies with fish were not used in deriving the other aquatic indices and
are not reliable for deriving a fish index.

From an acute toxicity point of view, we believe that fish will be sufficiently protected provided
we provide sufficient protection to aquatic invertebrates. The following plot shows the relative
fish and crustacean HCs values (the 5% tail of a cumulative frequency distribution of LCsq values
in ppb for the entire taxon) for a large number of pesticides, both currently registered and
historical. In most cases, an acute index based on the protection of crustacea should be
reasonably protective of fish.

| Log HC5 crustacea:Log HC5 fish: r2 =0.6144; r =0.7839, p = 00.0000

Log HCS5 fish = 1.4353+0.6906*x

Log HC5 fish

4 2 o 2 4 6
Log HCS crustacea
We propose to make the fish index one of chronic toxicity. This will provide a parallel to the

terrestrial indices where we have developed avian acute and avian chronic indices; the latter
designed to flag compounds that have a long half life in the environment.

Data sources

MATC values — the geometric midpoint between lifecycle NOAEC and LOAEC values — are the
desired endpoints. These values are either obtained directly from a fish full life cycle test or,
more often from an early life test, a shorter test which has become the norm for pesticide
testing. It has been suggested that these two tests are functionally equivalent and give MATC
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values within a factor of two of one another (McKim 2005). However, this conclusion differs
dramatically from the earlier opinion of Suter and colleagues (1987) who found that fecundity
(which can only be measured from a full life cycle test), and not early life stage survival was the
most sensitive effect. Suter and colleagues had argued that a full life cycle test was needed.
McKim (op. cit.) does not cite that earlier study by Suter et al. so it is difficult to assess these
relative claims.

When either is unavailable, it is customary to estimate the MATC from an acute to chronic
extrapolation. For example, the acute to chronic extrapolation used by NRCS in the WIN PST
program is the relation between the EC,5 hatching rate and the LCso obtained from Barnthouse,
Suter and Rosen (1990) based on a sample of 31 studies.

Log (Hatch ECys5 in ppb) = 1.1 * (log LCsq in ppb) — 1.2

However, use of this formula alone to approximate a measured MATC does introduce
additional uncertainty because measured MATCs might reflect a number of different endpoints.
Barnthouse and colleagues give three more extrapolations:

Log (Parental LCys in ppb) = 0.87 * (log LCsp in ppb) —0.87 (N = 28)

Log (Larval LCys in ppb) = 1.0 * (log LCso in ppb) —0.89 (N = 89)

Log (EC,s5 eggs per surviving fish in ppb) = 1.1 * (log LCso in ppb) —1.89 (N = 42)

As indicated by Suter et al. (1987), early life survival is not necessarily the most sensitive
endpoint of a full life-cycle fish test. Fecundity was typically affected at lower concentrations.
Therefore, an alternative acute-chronic regression that would seem to be more protective of
fish reproduction is the relationship between LCso and a measured MATC from the available full
life cycle tests (N=55).

Log (MATC in ppb) =0.90 * (log LCsp in ppb) —1.16

Because all these regressions included a wide range of contaminants — not just pesticides — | re-
ran the analysis using the NRCS database of measured full life cycle tests (N=17) and early life
tests (N=157) combined. These were matched where possible to LCso data compiled from a
number of sources including USEPA one liner data, Ecotox, Pesticide Manual and European
registration data.
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In choosing from available LCso data, the following rules were followed:

Only technical a.i. data were used

Exact species match was required

96 hr. data were used where available

Flow through data were used in preference to static tests

Obvious outlier values among replicate studies within a given species were excluded
A geometric mean of suitable replicate values was retained

A total of 52 pairs of data points were available for the regression.

In addition, HCs values based on SSDs were also tabulated. These are the values given in
Whiteside et al. (2008). Detailed methods are given therein.

The regression equation (see plot below) for the NRCS pesticide dataset (download obtained
sept 09) is:

Log (MATC in ppb) = 0.85 (log LCsg in ppb) — 1.125

... Which is very close to the regression obtained by Suter and colleagues for their sample of full
life cycle studies but with a broader range of chemicals. The regression is shown below.

Log MATC

Scatterplot (fishtox_092009b(PM analy ses) 18v *52c)
Log MATC = -1.1251+0.8502*x

1 0 1 2 3 4 5 6
Log LC50
Log LC50:Log MATC: r2=0.7041; r=0.8391, p = 0.0000

We recognize that this last regression (labeled Log MATC NRCS on plot below) may contain
more uncertainty than the careful comparisons of Suter and colleagues. The match of static and
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flow through tests may not always be exact; the time interval, although 96h in the vast majority
of cases did vary in a few cases. Nevertheless, the similarity between all the regressions is
encouraging.

All of these regressions were plotted against a range of fictitious LCsg values from 1 to 100,000
ppb. This plot is shown below. The important observation is that the slopes of the different
regression equations differ; therefore the curves are not parallel and intersect one another at
different values of the LCso. This means that no one algorithm gives the consistently most
protective estimate of the MATC across the whole range of possible LCsq values.

At lower LCsg values, the algorithm based on the egg production EC,5 endpoint gives
approximated MATC values that are much lower than any of the other regressions (as already
concluded by Suter and colleagues). The curves appear reasonably close on the plot but it is
important to recall that this is a log-log plot. At either end of the LC50 continuum modeled
here, there is an approximate 10 fold difference in MATC estimates.

Scatterplot (Fish acute to chronic regressions.sta 11v*9c)

2 4 D= Log MATC (Suter)
oo Log MATC (NRCS)
“&. Log EC25 Hatch
3 S& Log LC25 parent
0 1 2 3 4 5 & Log LC25 larvae
“®_ Log EC25 no. eggs
Log LC50

One reason for wanting to pick a protective estimate of the MATC is that Barnthouse, Suter and
colleagues (1987) warn that problems inherent to the concept of MATC (chiefly its dependence
on study design and dose levels chosen) mean that the MATC per se is not necessarily
protective of fish populations and could be higher than an ECyg population effect value.

Also, in keeping with principles established for all the PRIME indices, it is important to choose
an estimation method that carries the least amount of bias. A common strategy is to estimate
the MATC from the lowest 96 hr. LCsq available. This introduces a severe bias in that more
heavily tested pesticides (usually older products) are likely to have had a test carried out with a
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sensitive species. In contrast, experimentally-determined MATC values are typically obtained
for a single species only — which is unlikely to be the most sensitive species.

In order to provide a protective MATC and, more importantly, reduce any bias associated with
unequal testing among different pesticides, the following strategy is proposed:

e As with many of the other PRIME indices, HCs values — the lower 5% tail of a species
sensitivity distribution for all fish data — will be calculated (Van Vlaardingen et al. 2004).
Where needed, small sample approaches will be used as described in Whiteside et al.
(2008). In theory, this provides the best unbiased indication of the LCsq value for a
sensitive species in receiving waters.

e All available regressions given above will be run from the HCs value. The lowest MATC
estimate obtained will be retained.

e [f available, measured MATC values will be compared to the estimated MATC values.
Measured MATC values will be used only if lower than the lowest estimated value.

Index structure
We propose to use this minimum MATC as the relevant endpoint of the index and to assess the
amount of time that residues in the aquatic environment are above the MATC.

The final score will be expressed as a proportion of the reproduction period where MATC values
are exceeded. This is analogous to the derivation of the avian chronic index. We propose that a
1 month time interval would be a suitable approximation for the typical fish breeding season
and the denominator for this index. This is the approximate duration of fish life-cycle tests. At
this point, we do not propose to match specific fish breeding phenology with dates of pesticide
applications. The wide range in fish breeding seasons makes it difficult to do this. Therefore, the
index will, by necessity, represent the theoretical risk to fish species whose breeding seasons
coincide with the period of pesticide application.

The score will therefore be the number of days that water concentration exceeds the MATC
expressed as a proportion of a 30 day interval. In other words, the worst possible score of 1
would be a pesticide that causes a reproductive threshold to be exceeded for the entire 30 day
period.
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Appendix A: Peer Review Comments

This white paper was reviewed by the following independent experts. Below are their
comments, listed anonymously, along with the author’s responses.

e Katherine Palmquist, senior scientist, Exponent

e John Stark, professor of ecotoxicology, Washington State University

General comments:
e |tis my opinion that PRIME will be a useful tool for the relative ranking of pesticide risk
that can be used by growers, farm advisors food producers, IPM teams and others to
make decisions on which pesticides to use.

e The PRIME model appears to be a simple, useful tool to predict the risk of agriculturally-
applied pesticides, and the fact that it provides guidance in terms of mitigation further
enhances the usefulness of the model application.

Detailed comments and responses:

Comment 1: For the aquatic invertebrate risk index, crustaceans were used as the species of
concern. Itis not listed which crustaceans were used in this analysis; | presume that Daphnids,
grass shrimp, and amphipods make up the majority of the organisms used in the program.
More detail on the species evaluated would be helpful.

Response: The complete list of tested species would be a very large list, each active
ingredient potentially having different species represented in the species sensitivity
distribution. It could, however, easily be compiled if needed. A summary statement was
prepared for publication of the crustacean model (the paper is about to be sent for
review). The following summary statement is taken from that draft publication and will
be added to the white paper:

“By and large, the Cladocera, Calanoida and Cyclopoida were the most studied
crustaceans with pesticide effect data for these zooplankton orders found in 89% of
studies. The effects of pesticides on Amphipoda and Ostracoda were followed in 30% of
the studies.” | will also add more information on the size of the dataset.

Comment 2: The choice of crustaceans as the key organisms of concern appears to me to be
valid as this group of organisms is usually quite sensitive to pesticides, particularly insecticides.
Thus, protecting crustaceans should provide protection for other aquatic invertebrates. In fact,
it is shown in the fish index that crustaceans can be used to protect fish. However, one concern
is that there is far less aquatic insect-pesticide data in the literature than for crustaceans and
that these species, especially the larval forms of mayflies, stoneflies and dragon flies may be
particularly sensitive to pesticides, maybe more so than crustaceans.
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Response: We agree. It was our intent to include both groups but, as pointed out, insect
data is much more sparse. The data we do have does not suggest that insects will be
sensitive but, the point is taken that the highly sensitive groups are not tested often.

Comment 3: A series of papers in the past promoted an approach to protect a percentage of
species using a species-sensitivity index (see below for some of these). The approach by
Solomon et al. had an associated probability of effect but relied heavily on the acute LC50. It
was never widely adopted but did make it into an EPA document on ecological risk assessment.
The question is: why is the PRIME approach better than the one proposed by Solomon et al. or
the others listed above?

Response: Solomon and others make the critical (untested) assumption that laboratory
data are adequate to represent field impacts. We simply test that assumption with the
pond and mesocosms data.

Comment 4: | think that the incorporation of mesocosm data may be helpful but one could
argue that the mesocosm data is a mess and was very hard to interpret. That is why it was
abandoned by EPA. Because the fish index relies on reproduction data | think it has an
advantage over acute mortality data.

Response: We have been able to extract workable models from these data. Others (e.g.
Brock Maltby etc...) have similarly used mesocosms data successfully. The advantage of
incorporating the fish index is that it considers pesticide persistence and chronic effects.
As such, the acute crustacean and reproductive fish indices complement each other.

Comment 5: Given the number of potential end-users and the diversity of applications for the
PRIME model, | would caution against the unintended overestimation of risk, especially in the
case of pesticides with limited toxicological data sets. To this end, would it be possible to
weight or rank the certainty of the risk estimate based on either the quantity or the variability
of the toxicological data?

Response: That would add a great deal of complexity to the output and make the
output very difficult to interpret by the user. The methods used to derive the species
sensitivity distributions have been chosen to produce the least bias possible relative to
data availability.

Comment 6: | am concerned that the reliability of the original data set may become lost among
all the model computations. Also, a measure of confidence applied to the “ranks” of potentially
used pesticides would inform the relative risk ranking and should improve the subsequent
selection process by the applicator.

Response: In principle, | agree. However, incorporating all known sources of variability
in the model (from the conduct of every toxicity test in the laboratory all the way to
curve fitting in the models) is technically very difficult or impossible. This is why it has
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never been done by any jurisdiction anywhere. Also, assuming we could do it, it would
make interpretation very complex.

Comment 7: The SSD methodology included combining marine/estuarine and freshwater
species on the basis that the sensitivities of the two groups were statistically indistinguishable.
However, marine/estuarine species are usually more sensitive than freshwater organisms, and
therefore an SSD comprised of both taxa subsets will be skewed versus an SSD containing only
one taxa set. In the case of freshwater organisms, the calculated HCs will be pushed lower,
while for marine/estuarine organisms, the HCs value derived from the entire data set will be
higher than that which would be derived using only the marine/estuarine toxicity values. Given
the disparate physio-chemical properties of the two environments (impacting fate and
degradation) and the different biological and physiological attributes of the resident organisms,
separating the toxicological data into two different SSDs would be more appropriate. Not only
would this improve the power of the model, but it would also produce separate, unique risk
rankings for both potentially impacted freshwater and saltwater systems.

Response: It was shown (Maltby) that any freshwater/marine skew is as a result of a
larger proportion of sensitive taxonomic groups in the marine environment. However,
those taxonomic groups are also present in freshwater systems, just not tested as
commonly. This is why we opted to include them in an overall SSD. This is an
interesting idea we might be able to incorporate in a future version of the software;
however, it is unlikely there will be insufficient marine data to develop a separate SSD.

Comment 8: Developers of the SSD methodology expressed concern that life stage at time of
exposure may have introduced additional variability into the model. However, it is unlikely that
significant differences in sensitivity would be observed in this case, especially in the case of
crustacean and insect toxicity tests, due to the fact that handling test organisms would require
that animals be of “workable” size and robustness. A more plausible source of variability would
be the origin of the test animals. Field-collected organisms can exhibit increased tolerance for
pesticides when compared to laboratory-collected organisms of the same species. While
Daphnia sp. are rarely collected from field sites, insect and fish toxicity tests have been more
frequently conducted with organisms not obtained from laboratory stock. A better
understanding of test organisms origins may help explain some of the variability.

Response: Agreed. However, source of test animals is seldom available in the test data.
Trait-based strategies for choosing test species have also become popular (Van Den
Brink, Baird etc...). However, this science is not yet advanced enough to be incorporated
in this version of PRIME.

Comment 9: Given the number of studies incorporated into the model, it is likely that many of
the relied-upon documents utilized only nominal concentrations (e.g. did not chemically verify
reported concentrations). This probably is a significant source of model variability and one that
is unlikely to be easily resolved. However, given that purity of the test compounds is frequently
reported, it may be useful to weight the resulting LC/ECso by the reported purity or by an
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estimated purity, where absent ( e.g. model LCsq = reported LCso x 0.9, where the purity of the
test substance is 90%).

Response: Unfortunately, this information is also often missing. We did make an
attempt to exclude data from compounds of low purity (see Whiteside et al. 2008).

Comment 10: For algae, the data set likely suffers from the limited number of algae species
utilized in toxicity tests; as a consequence, the mesocosm effects observed are likely to be
significantly different than those predicted by single-species toxicity studies. This may be one
of the reasons why the current algae model explains so little of the inherent variability (r’=
0.29), and the EPA is currently exploring new data methodologies and research objective to
remedy the limited algal and macrophyte species used in toxicity studies
(http://www.epa.gov/oppefedl/cwa fifra effects methodology/presentations/community aq
uatic plant.html#title).

Response: Agreed. This is clearly a weak area. There is also the possibility of
introducing a terrestrial plant index if desired. This will be fodder for future versions of
PRIME.

Comment 11: The modes-of-action of several important herbicides may be slow acting, e.g.
through the inhibition of gibberellins or carotenoid synthesis. In the case of these pesticides, a
long time period may pass between exposure and exhibition of toxic effects. This is in contrast
to insecticides, which are often designed to be fast-acting in efforts to immediately prevent the
proliferation of pest arthropods. [The notable exceptions here are juvenile hormone analogs,
the effects of which may only emerge long after exposure. However, effects of JH-type
pesticides do appear to occur in closer proximity to exposure than do effects of GSlIs or CSls].
Again, some of the high unexplained variability within the algae model may result from the fact
that short-term or acute toxicity studies may not appropriately predict the field effects of slow-
acting herbicides.

Response: Agreed.
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	Index Structure
	It should be noted that the number of TUs delivered to the ponds or mesocosms can be calculated directly because peak water concentrations are measured in all of the studies.  In the PRiME index, this step will depend on a good estimation of peak water concentrations.  A risk quotient based on water concentrations is the only approach possible if we are to consider all possible routes of exposure to the aquatic environment, notably drift and surface runoff.  Models exist to estimate both of these inputs separately, but their separate contributions must be added and the result expressed as a water concentration if they are both to be considered in our scores.
	The following plot shows all abundance changes recorded for all measured taxonomic groups in all pond and mesocosm studies.  The points are not strictly independent but this allows visualizing all the available data.  Two observations can be made: 1) the abundance data show a similar step function as shown with the count ratios above.  Large abundance changes and an increase in the proportion of affected species begin around 0.1 to 1 Toxic Units (-1 to 0 on log scale) based on the crustacean HC5 values.  By 10 Toxic Units or more (1 on log scale), disturbances to the aquatic systems are typically serious; 2) abundance changes are substantial – commonly higher than 10 fold and as high as 1000 fold – when the studies record that some species have been significantly affected.  This is an indication of the typically low power of mesocosm studies to detect significant effects on account of the high natural variability of those systems.
	Fewer studies are available on aquatic insect species.  In order to see whether a score based on crustacean data would also be protective of insects, the crustacean species count ratio and the equivalent count ratios for insect (on a family basis) are both plotted against the crustacean TU index.
	The impact on insects is not well predicted by the number of crustacean TUs – emphasizing the need to develop insect-specific toxicity measures.  However, it appears that a scheme based on crustacean TU values and sufficiently protective of crustacea will de facto protect insects.  We can therefore carry on with the development of a crustacean-based score with the knowledge that it will be protective of most aquatic invertebrates. (However, there as been relatively little testing of some insect larval groups potentially very sensitive to pesticides. As our understanding of trait-based toxicological sensitivity increases, it may be necessary to revise this position.)
	In order to work with the apparent non-linearity of the data and to transform the score into a probability of adverse outcome in line with the avian and mammalian scores, we defined a count ratio of 0.1 (10% of species being significantly affected by treatment) as an adverse outcome.  Realistically, the distribution of points in the dataset assembled does not allow us to distinguish between 10% and 20% of species being significantly affected.  As more field data are made available, it will be possible to refine these estimates. The count ratio data can therefore be re-plotted as follows:
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	Index Structure

	It should be noted that the number of TUs delivered to the ponds or mesocosms can be calculated directly because peak water concentrations are measured in all of the studies.  In our tool, this step will depend on a good estimation of peak water concentrations.  A risk quotient based on water concentrations is the only approach possible if we are to consider all possible routes of exposure to the aquatic environment, notably drift and surface runoff.  Models exist to estimate both of these inputs separately, but their separate contributions must be added and the result expressed as a water concentration if they are both to be considered in our scores.
	The following plot shows all abundance changes recorded for all measured taxonomic groups in all pond and mesocosm studies.  The points are not strictly independent but this allows visualizing all the available data.  Two observations can be made: 1) the abundance data show a similar step function as shown with the count ratios above.  Large abundance changes and an increase in the proportion of affected species begin around 1 to 10 Toxic Units (0 to 1 on log scale) based on the algal HC5 values.  Abundance changes in affected taxa can be substantial  – commonly higher than 10 fold and as high as 100,000 fold.  This is an indication of the typically low power of mesocosm studies to detect significant effects on account of the high natural variability of those systems.
	In order to work with the apparent non-linearity of the data and to transform the score into a probability of adverse outcome in line with the avian and mammalian scores, we defined a count ratio of 0.2 (20% of species being significantly affected by treatment) as an adverse outcome.  Realistically, the distribution of points in the dataset assembled does not allow us to distinguish between 20% and 30% of species being significantly affected.  As more field data are made available, it will be possible to refine these estimates. The count ratio data can therefore be re-plotted as follows:
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	We recognize that this last regression (labeled Log MATC NRCS on plot below) may contain more uncertainty than the careful comparisons of Suter and colleagues. The match of static and flow through tests may not always be exact; the time interval, although 96h in the vast majority of cases did vary in a few cases. Nevertheless, the similarity between all the regressions is encouraging. 
	All of these regressions were plotted against a range of fictitious LC50 values from 1 to 100,000 ppb. This plot is shown below. The important observation is that the slopes of the different regression equations differ; therefore the curves are not parallel and intersect one another at different values of the LC50. This means that no one algorithm gives the consistently most protective estimate of the MATC across the whole range of possible LC50 values. 
	At lower LC50 values, the algorithm based on the egg production EC25 endpoint gives approximated MATC values that are much lower than any of the other regressions (as already concluded by Suter and colleagues). The curves appear reasonably close on the plot but it is important to recall that this is a log-log plot. At either end of the LC50 continuum modeled here, there is an approximate 10 fold difference in MATC estimates. 
	Index structure
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